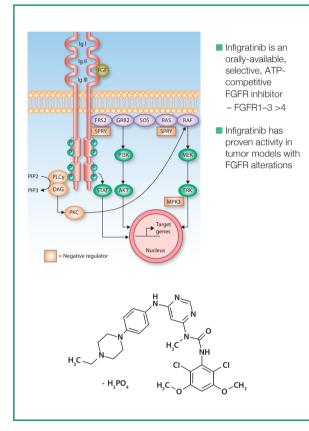
A phase II study of infigratinib (BGJ398) in previously-treated advanced cholangiocarcinoma containing *FGFR2* fusions

Javle M,¹ Kelley RK,² Roychowdhury S,³ Weiss K-H,⁴ Abou-Alfa GK,⁵ Macarulla T,⁶ Sadeghi S,⁷ Waldschmidt D,⁸ Zhu A,⁹ Goyal L,⁹ Borad M,¹⁰ Yong WP,¹¹ Borbath I,¹² El-Khoueiry A,¹³ Philip P,¹⁴ Steward K,¹⁵ Ye Y,¹⁵ Ising M,¹⁶ Lewis N,¹⁷ Bekaii-Saab T¹⁰


¹MD Anderson Cancer Center, Houston, TX, USA; ²University of California, San Francisco, CA, USA; ³Ohio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ⁴University Hospital Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁶Hospital Vall d'Hebron, Barcelona, Spain; ⁷University of California, Los Angeles, CA, USA; ⁸Klinikum de Universität zu Köln, Cologne, Germany; ⁹Massachusetts General Hospital, Boston, MA, USA; ¹⁰Mayo Clinic Arizona, Scottsdale, AZ, USA; ¹¹National University Cancer Institute, Singapore; ¹²Cliniques Universitaires St Luc Bruxelles, Brussels, Belgium; ¹³USC/Kenneth Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ¹⁴Karmanos Cancer Institute, Detroit, MI, USA; ¹⁵QED Therapeutics, San Francisco, CA, USA; ¹⁶Novartis, Florham Park, NJ, USA; ¹⁷Novartis Pharmaceutical Corporation, East Hanover, NJ, USA

#P-19

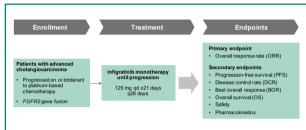
Background

- Cholangiocarcinomas are often diagnosed at an advanced unresectable stage, with few treatment options available after disease progression while receiving gemcitabine and cisplatin first-line chemotherapy, resulting in poor patient prognosis.
- Numerous cancers have fibroblast growth factor receptor (FGFR) genomic alterations. *FGFR* translocations (i.e. fusion events) represent driver mutations in cholangiocarcinoma. They are present in 13–17% of intrahepatic cholangiocarcinomas (IHC) and may predict tumor sensitivity to FGFR inhibitors.^{1–3}
- Infigratinib (BGJ398), an ATP-competitive FGFR1–3-selective oral tyrosine kinase inhibitor (Figure 1), has shown preliminary clinical activity against tumors with FGFR alterations.⁴
- In early-phase clinical evaluation, infigratinib showed a manageable safety profile and single-agent activity.^{5,6}
- A multicenter, open-label, phase II study (NCT02150967) evaluated the antitumor activity of infigratinib in patients with previously-treated advanced IHC containing FGFR2 fusions.

Figure 1. Infigratinib: an oral FGFR1-3 selective kinase inhibitor

Study methods

Patients


- Histologically or cytologically confirmed advanced/metastatic IHC with FGFR2 fusions or other FGFR genetic alterations identified by local Clinical Laboratory Improvement Amendments – certified testing or at a central facility.
- The protocol was modified to limit enrollment to only tumors with FGFR2 fusions.
- Measurable or evaluable disease according to RECIST (version 1.1), an ECOG performance status of 0 or 1, and evidence of disease progression after one or more prior regimens of gemcitabine-based combination therapy or gemcitabine monotherapy.

Treatment

- Patients received infigratinib 125 mg once daily for 21 days followed by 7 days off in 28-day cycles.
- To manage hyperphosphatemia, prophylactic use of sevelamer, a phosphate-binding agent, was recommended on days of infigratinib administration per the product packaging information and

Characteristic	N=71
Median age, years (range)	53 (28–74)
Male / female	27 (38.0) / 44 (62.0)
Race	
White	55 (77.5)
Black	3 (4.2)
Asian	4 (5.6)
Other / unknown	3 (4.2) / 6 (8.5)
ECOG performance status	
0 / 1	29 (40.8) / 42 (59.2)
Prior lines of therapy	
≤1	32 (45.1)
≥2	39 (54.9)
FGFR2 status	
Translocation positive	71 (100.0)
Mutated	5 (7.0)

Figure 2. Open-label, phase II study design

Table 2. Patient disposition

	Number %
Total receiving treatment	71 (100.0)
Treatment ongoing	9 (12.7)
Ended treatment	62 (87.3)
Missing	1 (1.4)
Adverse event	6 (8.5)
Death	1 (1.4)
Lost to follow-up	1 (1.4)
Physician decision	5 (7.0)
Progressive disease	44 (62.0)
Subject/guardian decision	4 (5.6)

Table 3. Clinical activity of infigratinib in advanced cholangiocarcinoma

Efficacy outcome in all fusion patients	N=71
Overall response rate (ORR; confirmed & unconfirmed), % (95% CI)	31.0 (20.5–43.1)
Complete response, n (%)	0
Partial response – confirmed, n (%)	18 (25.4)
Stable disease, n (%)	41 (57.7)
Progressive disease, n (%)	8 (11.3)
Unknown, n (%)	4 (5.6)
Efficacy outcome in patients with potential for confirmation*	
:ORR, % (95% CI)	26.9 (16.8–39.1)
cORR in patients receiving prior lines of treatment, %	
≤1 (n=28)	39.3
≥2 (n=39)	17.9
Disease control rate (DCR), % (95% CI)	83.6 (72.5–91.5)
Median duration of response, months (95% CI)	5.4 (3.7–7.4)
Median PFS, months (95% CI)	6.8 (5.3–7.6)
Median OS, months (95% CI)	12.5 (9.9–16.6)

alients completed (or discontinued prior to) 6 cycles. Investigator-assessed.

Figure 3. Tumor response and treatment exposure

Figure 4. Efficacy of infigratinib in FGFR2 fusion-positive cholangiocarcinoma

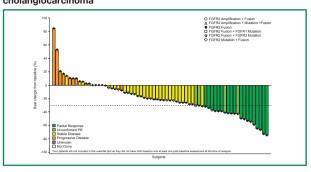


Figure 5. Efficacy of infigratinib in patients who received ≤1 line of prior systemic therapy for metastatic or unresectable disease

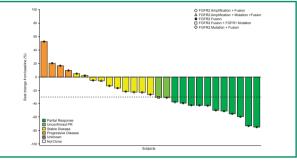
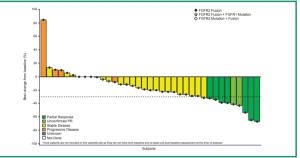



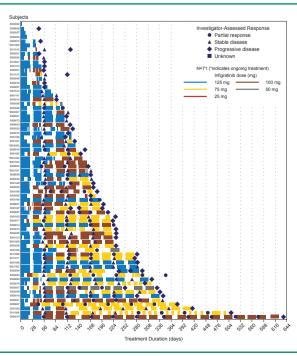
Figure 6. Efficacy of infigratinib in patients who received $\ge\!\!2$ lines of prior systemic therapy for metastatic or unresectable disease

Table 4. Infigratinib safety profile: any grade AEs ≥20%

Number of patients (%)	Any grade	Grade 3/4
Hyperphosphatemia	52 (73.2)	9 (12.7)
Fatigue	35 (49.3)	3 (4.2)
Stomatitis	32 (45.1)	7 (9.9)
Alopecia	27 (38.0)	0
Constipation	25 (35.2)	1 (1.4)
Dry eye	23 (32.4)	0
Dysgeusia	23 (32.4)	0
Arthralgia	21 (29.6)	1 (1.4)
Palmar-plantar erythrodysesthesia syndrome	19 (26.8)	4 (5.6)
Dry mouth	18 (25.4)	0
Dry skin	18 (25.4)	0
Diarrhea	17 (23.9)	2 (2.8)
Hypophosphatemia	17 (23.9)	10 (14.1)
Nausea	17 (23.9)	1 (1.4)
Vomiting	17 (23.9)	1 (1.4)
Hypercalcemia	16 (22.5)	3 (4.2)
Vision blurred	16 (22.5)	0
Decreased appetite	15 (21.1)	1 (1.4)
Weight decreased	15 (21.1)	2 (2.8)

Table 5. Infigratinib safety profile: grade 3/4 AEs >3%			
Number of patients (%)	Grade 3/4		
Hypophosphatemia	10 (14.1)		
Hyperphosphatemia	9 (12.7)		
Hyponatremia	8 (11.3)		
Stomatitis	7 (9.9)		
Lipase increased	4 (5.6)		
Palmar-plantar erythrodysesthesia syndrome	4 (5.6)		
Abdominal pain	3 (4.2)		
Anemia	3 (4.2)		
Blood alkaline phosphatase increased	3 (4.2)		
Fatigue	3 (4.2)		
Hypercalcemia	3 (4.2)		

0 -----


- institutional guidelines. Patients were also instructed to adhere to a low-phosphate diet.
- Patients continued infigratinib treatment until unacceptable toxicity, disease progression, and/or investigator discretion, or consent withdrawal.
- Dose modifications were based on the worst preceding toxicity. Treatment was resumed after resolution or reduction to grade 1 toxicity, with each patient allowed two dose reductions (100 mg, 75 mg) before infigratinib discontinuation.

Outcomes

- Tumor response was assessed per RECIST version 1.1, using CT or MRI.
- Primary and secondary efficacy endpoints see Figure 2.
- Adverse events (AEs) were assessed according to the Common Terminology Criteria for Adverse Events, version 4.03, during treatment and until 30 days after the last dose was administered.
- FGFR genetic alteration was required to confirm patient eligibility. These and other concurrent genetic alterations were correlated with clinical outcome.

Statistics

- Data were combined from all participating study sites for the analyses.
- Efficacy and safety analyses included all patients whose tumors had *FGFR2* fusions and received at least one infigratinib dose.

Conclusions

- Infigratinib is an oral, FGFR1–3-selective TKI that shows meaningful clinical activity against chemotherapy-refractory cholangiocarcinoma containing FGFR2 fusions/translocations.
- Clinical responses were observed in patients who dose reduced down to 50 mg infigratinib (daily for 3 weeks of a 4-week cycle).
- Infigratinib-associated toxicity is managed primarily with phosphate binders, routine supportive care and dose reductions.
- This promising antitumor activity and manageable safety profile supports continued development of infigratinib in this highly selected patient population.

Acknowledgements

- The authors would like to acknowledge the following:
- CBGJ398X2204 study investigators and participating patients
- Jeff Cai for programming and Ai Li for review of content (QED Therapeutics).
- Lee Miller (Miller Medical Communications) for provision of medical writing support for this poster. This work was funded by QED Therapeutics.

References

- Graham RP, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol 2014;45:1630-8.
- Ross JS, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 2014;19:235–42.
- sequencing. Oncologist 2014;19:235–42. 3. Farshidlar F, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep 2017;18:2780–94.
- Guagnano V, et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2012;2:1118-33.
- Cancer Discov 2012;21:118-33. 5. Nogova L, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: Results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol 2017;35:157-65.
- Guide Codemarch and Underschalterin study: J Uni O nucl 2017;30:107–00.
 G. Javie MM, et al. A phase 2 study of BGJ398 in patients (bis) with advanced or metastatic FGFR-altered cholangiocarcinoma (CCA) who failed or are intolerant to platinum-based chemotherapy. J Clin Oncol 2016;34(suppl 45; abstr 356).
- 7. Helsten et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 2016;22:259-67.

Presented at the 3rd Asia-Pacific Cholangiocarcinoma Conference, 15–16 March 2019, Taipei, Taiwan

Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.